

In-flight diagnostics in LISA PathFinder

Alberto Lobo
ICE-CSIC & IEEC

Thermal:

- Juan Ramos, UPC
- Pep Sanjuan, IEEC
- Miquel Nofrarias, IEEC
- Alberto Lobo, CSIC & IEEC

Magnetic:

- Lluís Martínez, Atipic
- Sergi García, Atipic

Radiation Monitor:

- Mokhtar Chemeissani, IFAE
- César Boatella, IEEC
- Carles Puigendoles, IFAE
- Henrique Araujo, ICL
- Peter Wass, ICL
- Catia Grimani, *Univ. Urbino*

Software:

- Joan Clua, NTE
- José Antonio Ortega, IEEC
- Xevi Xirgu, IEEC
- Aleix Conchillo, IEEC
- Héctor García, NTE

Management:

- Ivan Lloro, PM, IEEC
- Josep Colomé, Doc, IEEC
- Albert Tomàs, SE, NTE
- Xavi Llamas, SM, NTE
- Sònia Ferrer, PA, NTE

<u>PI</u>:

Alberto Lobo, CS/C & IEEC

Thermal:

- Juan Ramos, UPC
- Pep Sanjuan, IEEC
- Miquel Nofrarias, IEEC
- Alberto Lobo, CSIC & IEEC

Magnetic:

- Lluís Martínez, Atipic
- Sergi García, Atipic

Radiation Monitor:

- Mokhtar Chemeissani, IFAE
- César Boatella, IEEC
- Carles Puigendoles, IFAE
- Henrique Araujo, ICL
- Peter Wass, ICL
 - Catia Grimani, Univ. Urbino

<u>Software</u>:

- Joan Clua, NTE
- José Antonio Ortega, IEEC
- Xevi Xirgu, IEEC
- Aleix Conchillo, IEEC
- Héctor García, NTE

Management:

- Ivan Lloro, PM, IEEC
- Josep Colomé, Doc, IEEC
- Albert Tomàs, SE, NTE
- Xavi Llamas, SM, NTE
- Sònia Ferrer, PA, NTE

<u>PI</u>:

- · Alberto Lobo, CS/C & IEEC

Why is diagnostics analysis needed in the LTP

LISA's top level sensitivity requirement is:

LISA:
$$S_{\Delta a}^{1/2}(\omega) = 3 \times 10^{-15} \left[1 + \left(\frac{f}{3 \text{ mHz}} \right)^2 \right] \frac{m}{s^2} \text{Hz}^{-1/2} , \quad 0.1 \text{ mHz} \le f \le 0.1 \text{ Hz}$$

This is so very demanding a previous *LPF* mission is planned, with a relaxed sensitivity requirement:

LPF:
$$S_{\Delta a}^{1/2}(\omega) = 3 \times 10^{-14} \left[1 + \left(\frac{f}{3 \text{ mHz}} \right)^2 \right] \frac{m}{s^2} \text{Hz}^{-1/2} , \quad 1 \text{ mHz} \le f \le 30 \text{ mHz}$$

Even if LTP works to top perfection, a fundamental queston remains:

How do we make it to LISA's sensitivity?

Why is diagnostics analysis needed in the LTP

The methodology:

- 1. Split up total noise readout into parts –e.g., thermal, magnetic,...
- 2. Identify origin of excess noise of each kind
- 3. Orient future research in appropriate direction for improvement
- 1. Sensitive diagnostics hardware needs to be designed and built
- 2. a) Suitable places for monitoring must be identified.
 - b) Algorithms for information extraction need to be set up.
- 3. Creative research activity thereafter...

Noise reduction philosophy

Problem: to assess the contribution of a given *perturbation* to the total *noise force*.

Approach: 1) Apply *controlled* perturbation $\underline{\alpha}$ to the system

2) Measure "*feed-through*" coefficient between force and perturbation:

$$F(\alpha) = \frac{\partial f_{\text{int}}}{\partial \alpha}$$

- 3) Measure *actual* $\underline{\alpha}$ with suitable sensors
- 4) Estimate contribution of $\underline{\alpha}$ by *linear interpolation*:

$$f_{\rm int}(\alpha) = F(\alpha)\alpha$$

5) Substract out from total detected noise:

$$f_{\rm red} = f_{\rm int} - f_{\rm int}(\alpha)$$

6) *Iterate* process for all identified perturbations

LTP functional architecture

Diagnostics items:

- Purpose:
 - Noise split up
- Sensors for:
 - Temperature
 - Magnetic fields
 - Charged particles
- Calibration:
 - Heaters
 - Induction coils

<u>DMU:</u>

- Purpose:
 - LTP computer
- Hardware:
 - Power Distribution Unit (PDU)
 - Data Acquisition Unit (DAU)
 - Data Processing Unit (DPU)
- Software:
 - Boot SW
 - Application SW:
 - ✓ Diagnostics items
 - √ Phase-meter
 - ✓ Interfaces

Global *LTP* stability requirement: $10^{-4} \text{ K}/\sqrt{\text{Hz}}$, 1 mHz < f < 30 mHz

Sensor sensitivity requirement: $10^{-5} \text{ K/}\sqrt{\text{Hz}}$, 1 mHz < f < 30 mHz

Location	Number	Comments	Req. No
Optical Bench	4	On locations TBC	3.1
Optical Windows	4	2 per OW	3.2
Inertial Sensors	8	2 on each of the outer x-faces of the IS EH	3.3
LCA mounting struts	6	1 per strut, near centre (TBC)	3.4
Total	22		

Thermal jig

For:

$$R_{al}$$
=0.125 m
 R_{total} =0.325 m

$$H(f)|_{f=1 \text{ mHz}} = 8.75?10^{-7}$$

Faraday and Anechoic chamber (UPC facilities)

Test campaign

- Test run#1 results (Thermistor)
 - Power spectral density

A. Lobo

Goddard SFC, LISA #6, June 2006

Test campaign

- Test run#2 results (PRTD)
 - Power spectral density

Baking test

To prevent outgassing, a baking process is foressen for ISHs:

150° C for a few days, up to a week, maximum

Devices are testd and in place, ready for processing

Heaters will be used to measure thermal feedthroughs

Location	Number	Maximum peak to peak temp. variation within MBW	Comments	Req. No.
Optical window	4	100 mK as detected by closest sensor	2 per window	3.6
Inertial sensors	4	10 mK on inner x- faces of EH	1 on each outer x-face of EH	3.7
Suspension struts	6	100 mK (TBC) as detected by closest sensor	1 per strut	3.8
TOTAL	14			

Heaters

Refer to poster presentation by Miquel Nofrarias

Main problem is *magnetic noise*. This is due to various causes:

- Random fluctuations of magnetic field and its gradient
- DC values of magnetic field and its gradient
- Remnant magnetic moment of TM and its fluctuations
- Residual high frequency magnetic fields

Test masses are a AuPt alloy
70% Au + 30% Pt
of low susceptibility

$$|\chi| \le 10^{-5}$$

and low remnant magnetic moment:

$$|\mathbf{m}_0| \le 10^{-8} \,\mathrm{A}\,\mathrm{m}^2$$

Quantification of magnetic effects

If a magnetic field **B** acts on a small volume d^3x with remnant magnetisation **M**, and susceptibility χ , the force on this small volume is:

$$\frac{d\mathbf{F}}{d^3x} = \mathbf{\nabla} \left[\left(\mathbf{M} + \frac{\chi}{2\mu_0} \mathbf{B} \right) \cdot \mathbf{B} \right] = \left[\left(\mathbf{M} + \frac{\chi}{\mu_0} \mathbf{B} \right) \cdot \mathbf{\nabla} \right] \mathbf{B}$$

Total force requires integration over TM volume, or:

$$\mathbf{F} = \left\langle \left[\left(\mathbf{m}_0 + \frac{V \chi}{\mu_0} \mathbf{B} \right) \cdot \nabla \right] \mathbf{B} \right\rangle$$

Most salient feature is **non-linearity of force dependence** on **B**.

Magnitude	Value	
DC magnetic field	10μΤ	
DC magnetic field gradient	5μT/m	
Magnetic field fluctuation rms PSD	650 nT/√Hz	
Magnetic field gradient rms PSD	250 (nT/m) /√Hz	
Magnetic susceptibility	10-5	
Remnant magnetic moment	10 ⁻⁸ Am ²	

Magnetic sensor requirements

Req 2: A minimum 4 magnetometers.

Req 2-1: Resolution of 10 nT/sqrt(Hz) within MBW.

Req 2-2: Two magnetometers located along x-axis, each as close as possible to the centre of one of the TM, not farther than 120 mm.

- Req 2-3: The other two may be offset from the x-axis by an amount not larger than 120 mm (TBC), their x coordinate should fall between the IS's at distances TBC.
- Req 2-4: Operation of magnetometers compatible with full science performance.
- Req 2-5: Final exact choice of magnetometer locations depends on final configuration of magnetic sources. Limited adjustment of magnetometer positions to within +/- 10 cm along x, y and z must be allowed until system CDR.

Magnetometer layout

Magnetic field sources

According to data provided by ASU (Dave Wealthy), identified magnetic sources fall into three groups:

- Spacecraft sources
- LTP sources
 - Peripheral
 - Inside LCA
- DRS sources
- Sources associated to new structures?

Magnetic field reconstruction

Current status:

- Sources are clearly identified
- They are mostly Electronics Boards
- Magnetic moment direction is fixed
- Only moduli are unknown
- This gives good room for accurate estimates
- Any excess magnetic fields are readily detectable
- Detailed field reconstruction is an off-line task, not critical at this time
- There's room for perfectioning and fine-tuning analysis techniques

A. Lobo

Goddard SFC, LISA #6, June 2006

Magnetic field maps II

A. Lobo

Goddard SFC, LISA #6, June 2006

Philosophy: to apply controlled periodic magnetic fields:

$$\mathbf{B} = \mathbf{B}_{\text{ext}} + \mathbf{B}_{\text{app}} ; \quad \mathbf{B}_{\text{app}} (\mathbf{x}, t) = \mathbf{B}_{0} (\mathbf{x}) e^{i\omega t}$$

Force comes then a two frequencies:

$$\mathbf{F} = \mathbf{F}_{\omega} + \mathbf{F}_{2\omega}$$

$$\mathbf{F}_{\omega} = \left\langle \left(\mathbf{m}_{0} \cdot \nabla \right) \mathbf{B}_{\mathrm{app}} \right\rangle + \frac{V \chi}{\mu_{0}} \left\langle \left(\mathbf{B}_{\mathrm{ext}} \cdot \nabla \right) \mathbf{B}_{\mathrm{app}} + \left(\mathbf{B}_{\mathrm{app}} \cdot \nabla \right) \mathbf{B}_{\mathrm{ext}} \right\rangle$$

$$\mathbf{F}_{2\omega} = \frac{V \chi}{\mu_{0}} \left\langle \left(\mathbf{B}_{\mathrm{app}} \cdot \nabla \right) \mathbf{B}_{\mathrm{app}} \right\rangle \qquad \text{measure } \chi$$

$$(\omega \sim 1 \text{ mHz})$$

Coils must be long (2400 turns), to maintain reduced heat dissipation (~few mW).

Control coils

Purpose:

- To measure χ in flight
- To measure **M** in flight
- To drive magnetic noise

Coils must comply with suitable reqs. of power and stability. Test plan is written, and test will be done shortly.

General LTP layout

A. Lobo

Goddard SFC, LISA #6, June 2006

Radiation Monitor

Ionising particles will hit the *LTP*, causing spurious signals in the *IS*.

These are mostly protons (~90%), but there are also He ions (~8%) and heavier nuclei (~2%).

Charging rates vary depending on whether

- Galactic Cosmic Rays (GCR), or
- Solar Energetic Particles (SEP)

hit the detector, as they present different energy spectra. This has been shown by extensive simulation work at *ICL*.

Therefore a *Radiation Monitor* should provide the ability to distinguish *GCR* from *SEP* events.

This means **RM** needs to determine energies of detected particles.

ICL simulations, based on GEANT-4. (Peter Wass and Henrique Araujo)

Goddard SFC, LISA #6, June 2006

It is a particle counter with some specific capabilities:

- It counts particle hits
- Retrieves spectral information (coincident counts)
- Can (statistically) tell GCR from SEP events
- Electronics is space qualified

A. Lobo

Goddard SFC, LISA #6, June 2006

In place for test at PSI, Nov-2005

A. Lobo

Goddard SFC, LISA #6, June 2006

<u>DMU</u>

Purpose:

- LTP computer
- Hardware:
 - Power Distribution Unit (PDU)
 - Data Acquisition Unit (DAU)
 - Data Processing Unit (DPU)
- · Software:
 - Boot SW
 - Application SW:
 - ✓ Diagnostics items
 - √ Phase-meter
 - ✓ Interfaces

DPU board

DMU software

Goals:

- M&C of *LTP* subsystems
- Delivery of science data
- Remote LTP control from OBC/Ground

Refer to poster presentation by

Jose Antonio Ortega

Conclusion

- DDS is a key tool for debugging noise sources in LTP
- This should help clarify route of sensitvity improvement for LISA
- DDS design is mostly complete
- PDR was almost successful in September-2005
- δ -PDR will be (hopefully) successful next month (July-2006)
- Flight Hardware production will subsequently start
- Flight Software is already being written
- Data analysis techniques and algorithms for useful exploitation of DDS are being developed
- Joint work with various Institutes and industry